Quiz 3 Solution

November 4, 2018

Use gaussian elimination to solve the following two problems involving the three vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right], \text { and } \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]
$$

in \mathbb{R}^{4}.

1. Find all vectors \vec{w} in \mathbb{R}^{4} that are orthogonal to \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
2. Determine the values for c such that

$$
\left[\begin{array}{l}
1 \\
c \\
1 \\
c
\end{array}\right] \in \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} .
$$

Solution to Problem 1. \vec{w} is orthogonal to \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} if and only if

$$
\vec{v}_{1} \cdot \vec{w}=0, \vec{v}_{2} \cdot \vec{w}=0, \text { and } \vec{v}_{3} \cdot \vec{w}=0,
$$

or equivalently, the components of \vec{w} comprise a solution to the system

$$
\begin{align*}
& w_{1}+w_{2}+w_{3}+2 w_{4}=0 \\
& w_{1}+w_{2}+2 w_{3}+w_{4}=0 \tag{1}\\
& w_{1}+2 w_{2}+w_{3}+w_{4}=0
\end{align*}
$$

To solve this system we reduce the augmented matrix

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 2 & 0 \\
1 & 1 & 2 & 1 & 0 \\
1 & 2 & 1 & 1 & 0
\end{array}\right],
$$

by performing the following elementary row operations.
Step 1. Subtract the first row from the second row to obtain

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
1 & 2 & 1 & 1 & 0
\end{array}\right] .
$$

Step 2. Subtract the first row from the third row to obtain

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 0
\end{array}\right] .
$$

Step 3. Swap the second and third rows to obtain

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

Step 4. Subtract the second row from the first row to obtain

$$
\left[\begin{array}{ccccc}
1 & 0 & 1 & 3 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

Step 5. Subtract the third row from the first row to obtain

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 4 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] .
$$

Thus, w_{4} is a nonpivotal variable and the general solution to (1) is given by choosing w_{4} to be an arbitrary real number and then defining w_{1}, w_{2}, and w_{3} so that

$$
\begin{aligned}
w_{1}+4 w_{4} & =0 \\
w_{2}-w_{4} & =0 \\
w_{3}-w_{4} & =0 .
\end{aligned}
$$

Therefore the general vector \vec{w} orthogonal to \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} has the form

$$
\vec{w}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]=\left[\begin{array}{c}
-4 w_{4} \\
w_{4} \\
w_{4} \\
w_{4}
\end{array}\right]=w_{4}\left[\begin{array}{c}
-4 \\
1 \\
1 \\
1
\end{array}\right]
$$

where w_{4} is an arbitrary real number.

Solution to Problem 2.

$$
\left[\begin{array}{l}
1 \tag{2}\\
c \\
1 \\
c
\end{array}\right] \in \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}
$$

if and only if there exist real numbers x_{1}, x_{2}, x_{3} such that

$$
\left[\begin{array}{l}
1 \\
c \\
1 \\
c
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],
$$

or equivalently, the system

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}=1 \\
x_{1}+x_{2}+2 x_{3}=c \\
x_{1}+2 x_{2}+x_{3}=1 \tag{3}\\
2 x_{1}+x_{2}+x_{3}=c
\end{gather*}
$$

is solvable. The augmented matrix associated with this system is

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & c \\
1 & 2 & 1 & 1 \\
2 & 1 & 1 & c .
\end{array}\right]
$$

which we reduce via the following row operations.
Step 1. Subtract the first row from the second and third rows and subtract 2 times the first row from the fourth row to obtain

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & c-1 \\
0 & 1 & 0 & 0 \\
0 & -1 & -1 & c-2
\end{array}\right] .
$$

Step 2. Swap the second and third rows to obtain

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c-1 \\
0 & -1 & -1 & c-2
\end{array}\right] .
$$

Step 3. Subtract the second row from the first row and add the second row to the fourth row to obtain

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c-1 \\
0 & 0 & -1 & c-2
\end{array}\right] .
$$

Step 4. Subtract the third row from the first row and add the third row to the fourth row to obtain

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2-c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c-1 \\
0 & 0 & 0 & 2 c-3
\end{array}\right] .
$$

Now, the system (3) is solvable if and only if this last matrix does not have a pivot in the fourth row, i.e., $2 c-3=0$. Therefore, (2) holds if and only if $c=3 / 2$.

